Publications

2024

Micropreparative Gel Electrophoresis for Purification of Nanoscale Bioconjugates

S. H. Sajjadi; S-J. Wu; Y. Rabbani; V. Zubkovs; H. Ahmadzadeh et al. 

Bioconjugate Chemistry. 2024. DOI : 10.1021/acs.bioconjchem.3c00388.

In vivo polydopamine coating of Rhodobacter sphaeroides for enhanced electron transfer

R. Labarile; D. Vona; M. Varsalona; M. Grattieri; M. Reggente et al. 

Nano Research. 2024. DOI : 10.1007/s12274-023-6398-z.

Polydopamine-coated photoautotrophic bacteria for improving extracellular electron transfer in living photovoltaics

M. Reggente; C. E. M. Roullier; M. Mouhib; H. Wang; P. Brandl et al. 

Nano Research. 2024. DOI : 10.1007/s12274-023-6396-1.

2023

Electrospun zein incorporating phycocyanin and Spirulina extract: Fabrication, characterization, and potential application

M-T. Golmakani; F. Kiani; M. M. Hajjari; N. Sharif; M. Fazaeli et al. 

Lwt-Food Science And Technology. 2023-10-14. Vol. 188, p. 115408. DOI : 10.1016/j.lwt.2023.115408.

Polypyrrole Electrodes Show Strain‐Specific Enhancement of Photocurrent from Cyanobacteria

C. Roullier; M. Reggente; P. Gilibert; A. A. Boghossian 

Advanced Materials Technologies. 2023-04-04. DOI : 10.1002/admt.202201839.

Photoluminescence brightening of single-walled carbon nanotubes through conjugation with graphene quantum dots

S. H. Sajjadi; S-J. Wu; M. Reggente; N. Sharif; A. A. Boghossian 

2023-03-05. DOI : 10.1101/2023.02.28.528463.

Living Photovoltaics based on Recombinant Expression of MtrA Decaheme in Photosynthetic Bacteria

M. Reggente; N. Schurgers; M. Mouhib; S. Politi; A. Antonucci et al. 

2023-03-01. DOI : 10.1101/2023.02.28.530417.

Implementation of a flavin biosynthesis operon improves extracellular electron transfer in bioengineered Escherichia coli

M. Mouhib; M. Reggente; A. A. Boghossian 

2023-01-02

Engineering extracellular electron transfer for enhanced energy harvesting in microbial electrochemical devices

M. Mouhib / A. A. Boghossian (Dir.)  

Lausanne, EPFL, 2023. 

Prediction of mycotoxin response of DNA-wrapped nanotube sensor with machine learning

Y. Rabbani; S. Behjati; B. P. Lambert; S. H. Sajjadi; M. Shariaty-Niassar et al. 

2023. DOI : 10.1101/2023.09.07.556334.

Extracellular electron transfer pathways to enhance the electroactivity of modified Escherichia coli

M. Mouhib; M. Reggente; L. Li; N. Schuergers; A. A. Boghossian 

Joule. 2023. Vol. 7, num. 9, p. 2092-2106. DOI : 10.1016/j.joule.2023.08.006.

Directed evolution of nanosensors for the detection of mycotoxins

B. Lambert; A. Taheri; S-J. Wu; A. J. Gillen; M. Kashaninejad et al. 

2023. DOI : 10.1101/2023.06.13.544576.

Investigating the effect of inflammation on the progression of B-cell lymphoma dissemination in the sentinel lymph node

D. Molina Romero / A. A. Boghossian; S. Fernandez Gonzalez (Dir.)  

Lausanne, EPFL, 2023. 

Covalent conjugation of proteins onto fluorescent single-walled carbon nanotubes for biological and medical applications

H. Wang; A. Boghossian 

Materials Advances. 2023. Vol. 4, num. 3, p. 823-834. DOI : 10.1039/D2MA00714B.

Differential near-infrared imaging of heterocysts using single-walled carbon nanotubes

A. Antonucci; M. Reggente; A. J. Gillen; C. Roullier; B. P. Lambert et al. 

Photochemical & Photobiological Sciences. 2023. Vol. 22, p. 103–113. DOI : 10.1007/s43630-022-00302-3.

2022

Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics

A. Antonucci; M. Reggente; C. E. M. Roullier; A. J. Gillen; N. Schürgers et al. 

Nature Nanotechnology. 2022-09-19. DOI : 10.1038/s41565-022-01198-x.

Bioengineering a glucose oxidase nanosensor for near-infrared continuous glucose monitoring

V. Zubkovs; H. Wang; N. Schuergers; A. Weninger; A. Glieder et al. 

Nanoscale Advances. 2022-05-04.  p. 1-9. DOI : 10.1039/D2NA00092J.

Plasmon-induced near-infrared fluorescence enhancement of single-walled carbon nanotubes

A. Amirjani; T. V. Tsoulos; S. H. Sajjadi; A. Antonucci; S-J. Wu et al. 

Carbon. 2022-04-04. Vol. 194, p. 162-175. DOI : 10.1016/j.carbon.2022.03.040.

2021

Tailored extracellular electron transfer pathways enhance the electroactivity of Escherichia coli

M. Mouhib; M. Reggente; L. Li; N. Schürgers; A. A. Boghossian 

bioRxiv. 2021-08-28. DOI : 10.1101/2021.08.28.458029.

A simple micropreparative gel electrophoresis technique for purification of proteins, nucleic acids, and bioconjugates

S. H. Sajjadi; S-J. Wu; V. Zubkovs; H. Ahmadzadeh; E. K. Goharshadi et al. 

bioRxiv. 2021-05-26. DOI : 10.1101/2021.03.26.436431.

Modulating the properties of DNA-SWCNT sensors using chemically modified DNA

A. J. Gillen; B. P. Lambert; A. Antonucci; D. Molina-Romero; A. A. Boghossian 

bioRxiv. 2021-02-21. DOI : 10.1101/2021.02.20.432105.

Distinguishing dopamine and calcium responses using XNA-nanotube sensors for improved neurochemical sensing

A. J. Gillen; A. Antonucci; M. Reggente; D. Morales; A. A. Boghossian 

bioRxiv. 2021-02-20. DOI : 10.1101/2021.02.20.428669.

Biotechnology Applications of Nanocarbons in Plant and Algal Systems

A. Antonucci; A. J. Gillen; A. A. Boghossian 

Carbon Nanostructures for Biomedical Applications; Royal Society of Chemistry, 2021-02-15.

Directed evolution of DNA-wrapped single-walled carbon nanotube complexes for optical sensing

B. P. J. G. Lambert / A. A. Boghossian (Dir.)  

Lausanne, EPFL, 2021. 

2020

Site-Specific Protein Conjugation onto Fluorescent Single-Walled Carbon Nanotubes

V. Zubkovs; S-J. Wu; S. Y. Rahnamaee; N. Schuergers; A. A. Boghossian 

Chemistry of Materials. 2020-09-18. Vol. 32, num. 20, p. 8798-8807. DOI : 10.1021/acs.chemmater.0c02051.

Synthetic Biology: A Solution for Tackling Nanomaterial Challenges

B. P. Lambert; A. J. Gillen; A. A. Boghossian 

The Journal of Physical Chemistry Letters. 2020-05-22. Vol. 11, p. 4791-4802. DOI : 10.1021/acs.jpclett.0c00929.

Transport and programmed release of nanoscale cargo from cells by using NETosis

D. Meyer; S. Telele; A. Zelena; A. J. Gillen; A. Antonucci et al. 

Nanoscale. 2020-04-28. Vol. 12, num. 16, p. 9104-9115. DOI : 10.1039/d0nr00864h.

Banning carbon nanotubes would be scientifically unjustified and damaging to innovation

D. A. Heller; P. V. Jena; M. Pasquali; K. Kostarelos; L. G. Delogu et al. 

Nature Nanotechnology. 2020-03-10. Vol. 15, p. 164–166. DOI : 10.1038/s41565-020-0656-y.

Design of Optimized PEDOT‐Based Electrodes for Enhancing Performance of Living Photovoltaics Based on Phototropic Bacteria

M. Reggente; S. Politi; A. Antonucci; E. Tamburri; A. A. Boghossian 

Advanced Materials Technologies. 2020-02-13.  p. 1-9, 1900931. DOI : 10.1002/admt.201900931.

Sensing platform

A. A. Boghossian; V. Zubkovs; N. Schürgers 

EP4163635; US2022333154; CN115197995; US2022315979; JP2022130615; JP2022538067; AU2022204551; KR20220098272; CN114599793; EP3987049; KR20220035138; AU2020294875; LU101273; WO2020254336.

2020.

Establishing a Ternary System for Optical Monitoring of DNA-Protein Interactions with Single-Walled Carbon Nanotubes

S-J. Wu / A. A. Boghossian (Dir.)  

Lausanne, EPFL, 2020. 

Optical Biosensors for Improved Neurochemical Sensing Using Single-Walled Carbon Nanotubes

A. J. Gillen / A. A. Boghossian (Dir.)  

Lausanne, EPFL, 2020. 

Interaction of Fluorescent Single-Walled Carbon Nanotubes with Photosynthetic Microbes

A. Antonucci / A. A. Boghossian (Dir.)  

Lausanne, EPFL, 2020. 

2019

Templating colloidal sieves for tuning nanotube surface interactions and optical sensor responses

A. J. Gillen; D. Siefman; S-J. Wu; C. Bourmaud; B. Lambert et al. 

Journal of Colloid and Interface Science. 2019-12-21. Vol. 565, p. 55-62. DOI : 10.1016/j.jcis.2019.12.058.

Non-covalent Methods of Engineering Optical Sensors Based on Single-Walled Carbon Nanotubes

A. J. Gillen; A. A. Boghossian 

Frontiers in Chemistry. 2019-09-19. Vol. 7, num. 612. DOI : 10.3389/fchem.2019.00612.

Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials

M. Mouhib; A. Antonucci; M. Reggente; A. Amirjani; A. J. Gillen et al. 

Nano Research. 2019-06-11. Vol. 12, p. 2184–2199. DOI : 10.1007/s12274-019-2438-0.

Analytical Approaches for Monitoring DNA–Protein Interactions

S-J. Wu; A. A. Boghossian 

CHIMIA International Journal for Chemistry. 2019-04-01. Vol. 73, num. 4, p. 283-287. DOI : 10.2533/chimia.2019.283.

Directed evolution of the optoelectronic properties of synthetic nanomaterials

B. Lambert; A. J. Gillen; N. Schuergers; S-J. Wu; A. A. Boghossian 

Chemical Communications. 2019-02-27. Vol. 55, num. 1, p. 3239-3242. DOI : 10.1039/C8CC08670B.

Protein Bioconjugation to Carbon Nanotubes for Near-Infrared Sensing

V. Zubkovs / A. A. Boghossian (Dir.)  

Lausanne, EPFL, 2019. 

2018

Restriction Enzyme Analysis of Double-Stranded DNA on Pristine Single-Walled Carbon Nanotubes

S-J. Wu; N. Schuergers; K-H. Lin; A. J. Gillen; C. Corminboeuf et al. 

ACS Applied Materials & Interfaces. 2018-10-02. Vol. 10, num. 43, p. 37386-37395. DOI : 10.1021/acsami.8b12287.

Spinning-disc confocal microscopy in the second near-infrared window (NIR-II)

V. Zubkovs; A. Antonucci; N. Schuergers; B. Lambert; A. Latini et al. 

Scientific Reports. 2018-09-13. Vol. 8, num. 1, p. 1-1-. DOI : 10.1038/s41598-018-31928-y.

Xeno Nucleic Acid Nanosensors for Enhanced Stability Against Ion-Induced Perturbations

A. J. Gillen; J. Kupis-Rozmysłowicz; C. Gigli; N. Schuergers; A. A. Boghossian 

The Journal of Physical Chemistry Letters. 2018-07-13. Vol. 9, num. 15, p. 4336-4343. DOI : 10.1021/acs.jpclett.8b01879.

2017

Mediatorless, Reversible Optical Nanosensor Enabled through Enzymatic Pocket Doping

V. Zubkovs; N. Schuergers; B. Lambert; E. Ahunbay; A. A. Boghossian 

Small. 2017. Vol. 1701654, p. 1-10. DOI : 10.1002/smll.201701654.

A synthetic biology approach to engineering living photovoltaics

N. Schuergers; C. Werlang; C. M. Ajo-Franklin; A. A. Boghossian 

Energy & Environmental Science. 2017. Vol. 10, num. 5, p. 1102-1115. DOI : 10.1039/C7EE00282C.

Noncovalent Protein and Peptide Functionalization of Single-Walled Carbon Nanotubes for Biodelivery and Optical Sensing Applications

A. Antonucci; J. Kupis-Rozmyslowicz; A. Boghossian 

ACS Applied Materials and Interfaces. 2017. Vol. 9, num. 13, p. 11321–11331. DOI : 10.1021/acsami.7b00810.

2016

Living on the Edge: Re-shaping the Interface of Synthetic Biology and Nanotechnology

S-J. Wu; A. A. Boghossian 

Chimia. 2016. Vol. 70, num. 11, p. 773-779. DOI : 10.2533/chimia.2016.773.

Engineering the Selectivity of the DNA-SWCNT Sensor

J. Kupis-Rozmyslowicz; A. Antonucci; A. Boghossian 

Journal of Solid State Science and Technology. 2016. Vol. 5, num. 8, p. M3067-M3074. DOI : 10.1149/2.0111608jss.

2015

Applications of Nanoparticles for Reactive Oxygen Species (ROS) Scavenging in Photosynthetic Systems

A. Boghossian 

2015. 227th ECS Meeting, Chicago, Illinois, USA, May 24-28, 2015. DOI : 10.1149/06612.0001ecst.

2014

Spatiotemporal Intracellular Nitric Oxide Signaling Captured Using Internalized, Near-Infrared Fluorescent Carbon Nanotube Nanosensors

Z. W. Ulissi; F. Sen; X. Gong; S. Sen; N. Iverson et al. 

Nano Letters. 2014. Vol. 14, p. 4887-4894. DOI : 10.1021/nl502338y.

Plant nanobionics approach to augment photosynthesis and biochemical sensing [Erratum to document cited in CA160:482675]

J. P. Giraldo; M. P. Landry; S. M. Faltermeier; T. P. McNicholas; N. M. Iverson et al. 

Nature Materials. 2014. Vol. 13, p. 530. DOI : 10.1038/nmat3947.

Plant nanobionics approach to augment photosynthesis and biochemical sensing

J. P. Giraldo; M. P. Landry; S. M. Faltermeier; T. P. McNicholas; N. M. Iverson et al. 

Nature materials. 2014. Vol. 13, num. 4, p. 400-408. DOI : 10.1038/nmat3890.

2013

Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes

J. Zhang; M. P. Landry; P. W. Barone; J-H. Kim; S. Lin et al. 

Nature Nanotechnology. 2013. Vol. 8, p. 959-968. DOI : 10.1038/nnano.2013.236.

Effect of Reductive Dithiothreitol and Trolox on Nitric Oxide Quenching of Single-Walled Carbon Nanotubes

S. Sen; F. Sen; A. A. Boghossian; J. Zhang; M. S. Strano 

Journal of Physical Chemistry C. 2013. Vol. 117, p. 593-602. DOI : 10.1021/jp307175f.

Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting

A. A. Boghossian; F. Sen; B. M. Gibbons; S. Sen; S. M. Faltermeier et al. 

Advanced Energy Materials. 2013. Vol. 3, p. 881-893. DOI : 10.1002/aenm.201201014.

2012

Observation of Oscillatory Surface Reactions of Riboflavin, Trolox, and Singlet Oxygen Using Single Carbon Nanotube Fluorescence Spectroscopy

F. Sen; A. A. Boghossian; S. Sen; Z. W. Ulissi; J. Zhang et al. 

ACS Nano. 2012. Vol. 6, p. 10632-10645. DOI : 10.1021/nn303716n.

NoRSE: noise reduction and state evaluator for high-frequency single event traces

N. F. Reuel; P. Bojo; J. Zhang; A. A. Boghossian; J-H. Ahn et al. 

Bioinformatics. 2012. Vol. 28, p. 296-297. DOI : 10.1093/bioinformatics/btr632.

An Engineering Analysis of Natural and Biomimetic Self-Repair Processes for Solar Energy Harvesting

A. A. Boghossian / M. S. Strano (Dir.)  

Massachusetts Institute of Technology, 2012. 

2011

Single Molecule Detection of Nitric Oxide Enabled by d(AT)15 DNA Adsorbed to Near Infrared Fluorescent Single-Walled Carbon Nanotubes

J. Zhang; A. A. Boghossian; P. W. Barone; A. Rwei; J-H. Kim et al. 

Journal of the American Chemical Society. 2011. Vol. 133, p. 567-581. DOI : 10.1021/ja1084942.

Periplasmic Binding Proteins as Optical Modulators of Single-Walled Carbon Nanotube Fluorescence: Amplifying a Nanoscale Actuator

H. Yoon; J-H. Ahn; P. W. Barone; K. Yum; R. Sharma et al. 

Angewandte Chemie, International Edition. 2011. Vol. 50, num. 8, p. 1828-1831. DOI : 10.1002/anie.201006167.

Applicability of Birth-Death Markov Modeling for Single-Molecule Counting Using Single-Walled Carbon Nanotube Fluorescent Sensor Arrays

Z. W. Ulissi; J. Zhang; A. A. Boghossian; N. F. Reuel; S. F. E. Shimizu et al. 

Journal of Physical Chemistry Letters. 2011. Vol. 2, p. 1690-1694. DOI : 10.1021/jz200572b.

Transduction of Glycan-Lectin Binding Using Near-Infrared Fluorescent Single-Walled Carbon Nanotubes for Glycan Profiling

N. F. Reuel; J-H. Ahn; J-H. Kim; J. Zhang; A. A. Boghossian et al. 

Journal of the American Chemical Society. 2011. Vol. 133, p. 17923-17933. DOI : 10.1021/ja2074938.

Single-Molecule Detection of H2O2 Mediating Angiogenic Redox Signaling on Fluorescent Single-Walled Carbon Nanotube Array

J-H. Kim; C. R. Patra; J. R. Arkalgud; A. A. Boghossian; J. Zhang et al. 

ACS Nano. 2011. Vol. 5, p. 7848-7857. DOI : 10.1021/nn201904t.

Peptide secondary structure modulates single-walled carbon nanotube fluorescence as a chaperone sensor for nitroaromatics

D. A. Heller; G. W. Pratt; J. Zhang; N. Nair; A. J. Hansborough et al. 

Proceedings of the National Academy of Sciences of the United States of America. 2011. Vol. 108, p. 8544-8549. DOI : 10.1073/pnas.1005512108.

The chemical dynamics of nanosensors capable of single-molecule detection

A. A. Boghossian; J-Q. Zhang; F. T. Le Floch-Yin; Z. W. Ulissi; P. Bojo et al. 

Journal of Chemical Physics. 2011. Vol. 135, p. 084124/1-084124/10. DOI : 10.1063/1.3606496.

Near-Infrared Fluorescent Sensors based on Single-Walled Carbon Nanotubes for Life Sciences Applications

A. A. Boghossian; J. Zhang; P. W. Barone; N. F. Reuel; J-H. Kim et al. 

ChemSusChem. 2011. Vol. 4, p. 848-863. DOI : 10.1002/cssc.201100070.

Biomimetic strategies for solar energy conversion: a technical perspective

A. A. Boghossian; M-H. Ham; J. H. Choi; M. S. Strano 

Energy & Environmental Science. 2011. Vol. 4, p. 3834-3843. DOI : 10.1039/c1ee01363g.

Dynamic and reversible self-assembly of photoelectrochemical complexes based on lipid bilayer disks, photosynthetic reaction centers, and single-walled carbon nanotubes

A. A. Boghossian; J. H. Choi; M-H. Ham; M. S. Strano 

Langmuir. 2011. Vol. 27, p. 1599-1609. DOI : 10.1021/la103469s.

Label-Free, Single Protein Detection on a Near-Infrared Fluorescent Single-Walled Carbon Nanotube/Protein Microarray Fabricated by Cell-Free Synthesis

J-H. Ahn; J-H. Kim; N. F. Reuel; P. W. Barone; A. A. Boghossian et al. 

Nano Letters. 2011. Vol. 11, p. 2743-2752. DOI : 10.1021/nl201033d.

2010

Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes

H. Jin; D. A. Heller; M. Kalbacova; J-H. Kim; J. Zhang et al. 

Nature Nanotechnology. 2010. Vol. 5, p. 302-309. DOI : 10.1038/nnano.2010.24.

Single-molecule optical detection of nitroaromatic compounds by carbon nanotubes

D. A. Heller; G. W. Pratt; J. Zhang; N. Nair; A. J. Hansborough et al. 

2010.  p. INOR-454.

Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate

M-H. Ham; J. H. Choi; A. A. Boghossian; E. S. Jeng; R. A. Graff et al. 

Nature Chemistry. 2010. Vol. 2, p. 929-936. DOI : 10.1038/nchem.822.

Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate

A. A. Boghossian; M-H. Ham; J. H. Choi; M. S. Strano 

2010.  p. COLL-510.

2009

The chemistry of single-walled nanotubes

M. S. Strano; A. A. Boghossian; W-J. Kim; P. W. Barone; E. S. Jeng et al. 

MRS Bulletin. 2009. Vol. 34, p. 950-961. DOI : 10.1557/mrs2009.218.

 


BOOK CHAPTERS

Biomimetic Self-Repair of Nanotube-Based Complexes for the Regeneration of Photoactivity
A. A. Boghossian, M. H. Ham, J. H. Choi, M. S. Strano in Self-Healing at the Nanoscale, Taylor & Francis 2012.
Self-Repairing Photoelectrochemical Complexes Based on Nanoscale Synthetic and Biological Components
M. H. Ham, A. A. Boghossian, J. H. Choi, M .S. Strano, M.S.  in Encyclopedia of Nanotechnology, Springer 2012.

Biotechnology Applications of Nanocarbons in Plant and Algal Systems

A. Antonucci, A.J. Gillen, A.A. Boghossian in  Carbon Nanomaterials for Biomedical Applications, Royal Society of Chemistry 2021